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Abstract—Face detection and alignment in unconstrained en-
vironment are challenging due to various poses, illuminations and 
occlusions. Recent studies show that deep learning approaches 
can achieve impressive performance on these two tasks. In this 
paper, we propose a deep cascaded multi-task framework which 
exploits the inherent correlation between detection and alignment 
to boost up their performance. In particular, our framework 
leverages a cascaded architecture with three stages of carefully 
designed deep convolutional networks to predict face and land-
mark location in a coarse-to-fine manner. In addition, we propose 
a new online hard sample mining strategy that further improves 
the performance in practice. Our method achieves superior ac-
curacy over the state-of-the-art techniques on the challenging 
FDDB and WIDER FACE benchmarks for face detection, and 
AFLW benchmark for face alignment, while keeps real time per-
formance.  
 

Index Terms—Face detection, face alignment, cascaded con-
volutional neural network  
 

I. INTRODUCTION 

ACE detection and alignment are essential to many face 
applications, such as face recognition and facial expression 

analysis. However, the large visual variations of faces, such as 
occlusions, large pose variations and extreme lightings, impose 
great challenges for these tasks in real world applications. 

The cascade face detector proposed by Viola and Jones [2] 
utilizes Haar-Like features and AdaBoost to train cascaded 
classifiers, which achieves good performance with real-time 
efficiency. However, quite a few works [1, 3, 4] indicate that 
this kind of detector may degrade significantly in real-world 
applications with larger visual variations of human faces even 
with more advanced features and classifiers. Besides the cas-
cade structure, [5, 6, 7] introduce deformable part models 
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(DPM) for face detection and achieve remarkable performance. 
However, they are computationally expensive and may usually 
require expensive annotation in the training stage. Recently, 
convolutional neural networks (CNNs) achieve remarkable 
progresses in a variety of computer vision tasks, such as image 
classification [9] and face recognition [10]. Inspired by the 
significant successes of deep learning methods in computer 
vision tasks, several studies utilize deep CNNs for face detec-
tion. Yang et al. [11] train deep convolution neural networks 
for facial attribute recognition to obtain high response in face 
regions which further yield candidate windows of faces. 
However, due to its complex CNN structure, this approach is 
time costly in practice. Li et al. [19] use cascaded CNNs for 
face detection, but it requires bounding box calibration from 
face detection with extra computational expense and ignores 
the inherent correlation between facial landmarks localization 
and bounding box regression. 

Face alignment also attracts extensive research interests. 
Researches in this area can be roughly divided into two cate-
gories, regression-based methods [12, 13, 16] and template 
fitting approaches [14, 15, 7]. Recently, Zhang et al. [22] 
proposed to use facial attribute recognition as an auxiliary task 
to enhance face alignment performance using deep convolu-
tional neural network. 

However, most of previous face detection and face alignment 
methods ignore the inherent correlation between these two 
tasks. Though several existing works attempt to jointly solve 
them, there are still limitations in these works. For example, 
Chen et al. [18] jointly conduct alignment and detection with 
random forest using features of pixel value difference. But, 
these handcraft features limit its performance a lot. Zhang et al. 
[20] use multi-task CNN to improve the accuracy of multi-view 
face detection, but the detection recall is limited by the initial 
detection window produced by a weak face detector. 

On the other hand, mining hard samples in training is critical 
to strengthen the power of detector. However, traditional hard 
sample mining usually performs in an offline manner, which 
significantly increases the manual operations. It is desirable to 
design an online hard sample mining method for face detection, 
which is adaptive to the current training status automatically. 

In this paper, we propose a new framework to integrate these 
two tasks using unified cascaded CNNs by multi-task learning. 
The proposed CNNs consist of three stages. In the first stage, it 
produces candidate windows quickly through a shallow CNN. 
Then, it refines the windows by rejecting a large number of 
non-faces windows through a more complex CNN. Finally, it 
uses a more powerful CNN to refine the result again and output 
five facial landmarks positions. Thanks to this multi-task 
learning framework, the performance of the algorithm can be 
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notably improved. The codes have been released in the project 
page1. The major contributions of this paper are summarized as 
follows: (1) We propose a new cascaded CNNs based frame-
work for joint face detection and alignment, and carefully de-
sign lightweight CNN architecture for real time performance. 
(2) We propose an effective method to conduct online hard 
sample mining to improve the performance. (3) Extensive ex-
periments are conducted on challenging benchmarks, to show 
significant performance improvement of the proposed approach 
compared to the state-of-the-art techniques in both face detec-
tion and face alignment tasks. 

II. APPROACH 

In this section, we will describe our approach towards joint 
face detection and alignment. 

A. Overall Framework 

The overall pipeline of our approach is shown in Fig. 1. 
Given an image, we initially resize it to different scales to build 
an image pyramid, which is the input of the following 
three-stage cascaded framework: 

Stage 1: We exploit a fully convolutional network, called 
Proposal Network (P-Net), to obtain the candidate facial win-
dows and their bounding box regression vectors.  Then candi-
dates are calibrated based on the estimated bounding box re-
gression vectors. After that, we employ non-maximum sup-
pression (NMS) to merge highly overlapped candidates. 

 
1https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html 

Stage 2: All candidates are fed to another CNN, called Re-
fine Network (R-Net), which further rejects a large number of 
false candidates, performs calibration with bounding box re-
gression, and conducts NMS. 

Stage 3: This stage is similar to the second stage, but in this 
stage we aim to identify face regions with more supervision. In 
particular, the network will output five facial landmarks’ posi-
tions. 

B. CNN Architectures 

In [19], multiple CNNs have been designed for face detec-
tion. However, we notice its performance might be limited by 
the following facts: (1) Some filters in convolution layers lack 
diversity that may limit their discriminative ability. (2) Com-
pared to other multi-class objection detection and classification 
tasks, face detection is a challenging binary classification task, 
so it may need less numbers of filters per layer. To this end, we 
reduce the number of filters and change the 5×5 filter to 3×3 
filter to reduce the computing while increase the depth to get 
better performance. With these improvements, compared to the 
previous architecture in [19], we can get better performance 
with less runtime (the results in training phase are shown in 
Table I. For fair comparison, we use the same training and 
validation data in each group). Our CNN architectures are 
shown in Fig. 2. We apply PReLU [30] as nonlinearity activa-
tion function after the convolution and fully connection layers 
(except output layers). 

C. Training  

We leverage three tasks to train our CNN detectors: 
face/non-face classification, bounding box regression, and 
facial landmark localization. 
1) Face classification: The learning objective is formulated as 
a two-class classification problem. For each sample ݔ௜, we use 
the cross-entropy loss: 
 

௜ௗ௘௧ܮ      = ௜ௗ௘௧ݕ)− log(݌௜) + (1 − ௜ௗ௘௧)(1ݕ − log(݌௜)))   (1) 
              

where  ݌௜ is the probability produced by the network that in-
dicates sample ݔ௜  being a face. The notation 	ݕ௜ௗ௘௧ ∈ {0,1}  
denotes the ground-truth label. 
2) Bounding box regression: For each candidate window, we 
predict the offset between it and the nearest ground truth (i.e., 
the bounding boxes’ left, top, height, and width). The learning 
objective is formulated as a regression problem, and we employ 
the Euclidean loss for each sample  ݔ௜: 
 

௜௕௢௫ܮ         = ฮݕො௜௕௢௫ −  ௜௕௢௫ฮଶଶ                             (2)ݕ

Test image

Stage 1
P-Net

Stage 2
R-Net

Stage 3
O-Net

NMS &
Bounding box regression

NMS &
Bounding box regression

NMS &
Bounding box regression

Image pyramid

Resize

Fig. 1.  Pipeline of our cascaded framework that includes three-stage mul-
ti-task deep convolutional networks. Firstly, candidate windows are produced
through a fast Proposal Network (P-Net). After that, we refine these candidates 
in the next stage through a Refinement Network (R-Net). In the third stage,
The Output Network (O-Net) produces final bounding box and facial land-
marks position. 

TABLE I 

COMPARISON OF SPEED AND VALIDATION ACCURACY OF OUR CNNS AND 

PREVIOUS CNNS [19] 

Group CNN 
300 × Forward 
Propagation 

Validation Accuracy

Group1 
12-Net [19] 0.038s 94.4% 

P-Net 0.031s 94.6% 

Group2 
24-Net [19] 0.738s 95.1% 

R-Net 0.458s 95.4% 

Group3 
48-Net [19] 3.577s 93.2% 

O-Net 1.347s 95.4% 
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where 	ݕො௜௕௢௫	 is the regression target obtained from the network 
and ݕ௜௕௢௫ is the ground-truth coordinate. There are four coor-
dinates, including left top, height and width, and thus  ݕ௜௕௢௫ ∈	ℝସ. 
3) Facial landmark localization: Similar to bounding box 
regression task, facial landmark detection is formulated as a 
regression problem and we minimize the Euclidean loss: 
 

௜௟௔௡ௗ௠௔௥௞ܮ             = ฮݕො௜௟௔௡ௗ௠௔௥௞ −   ௜௟௔௡ௗ௠௔௥௞ฮଶଶ                (3)ݕ

  
where ݕො௜௟௔௡ௗ௠௔௥௞ is the facial landmark’s coordinates obtained 
from the network and ݕ௜௟௔௡ௗ௠௔௥௞ is the 	ground-truth coordinate 
for the i-th sample. There are five facial landmarks, including 
left eye, right eye, nose, left mouth corner, and right mouth 
corner, and thus ݕ௜௟௔௡ௗ௠௔௥௞ ∈ 	ℝଵ଴. 
4) Multi-source training: Since we employ different tasks in 
each CNN, there are different types of training images in the 
learning process, such as face, non-face, and partially aligned 
face. In this case, some of the loss functions (i.e., Eq. (1)-(3)) 
are not used. For example, for the sample of background region, 
we only compute  ܮ௜ௗ௘௧, and the other two losses are set as 0. 
This can be implemented directly with a sample type indicator. 
Then the overall learning target can be formulated as: 
 
                     min	∑ ∑ ௜௝௝∈{ௗ௘௧,௕௢௫,௟௔௡ௗ௠௔௥௞}ே௜ୀଵܮ௜௝ߚ௝ߙ              (4) 

             
where ܰ is the number of training samples and ߙ௝  denotes on 
the task importance. We use (αௗ௘௧ = 1, α௕௢௫ =0.5, α௟௔௡ௗ௠௔௥௞ = 0.5)  in P-Net and R-Net, while (αௗ௘௧ =1, α௕௢௫ = 0.5, α௟௔௡ௗ௠௔௥௞ = 1)  in O-Net for more accurate 
facial landmarks localization. ߚ௜௝ ∈ {0,1}  is the sample type 
indicator. In this case, it is natural to employ stochastic gradient 
descent to train these CNNs. 
5) Online Hard sample mining: Different from conducting 
traditional hard sample mining after original classifier had been 
trained, we conduct online hard sample mining in face/non-face 
classification task which is adaptive to the training process.  

In particular, in each mini-batch, we sort the losses computed 

in the forward propagation from all samples and select the top 
70% of them as hard samples. Then we only compute the gra-
dients from these hard samples in the backward propagation. 
That means we ignore the easy samples that are less helpful to 
strengthen the detector during training. Experiments show that 
this strategy yields better performance without manual sample 
selection. Its effectiveness is demonstrated in Section III. 

III. EXPERIMENTS 

In this section, we first evaluate the effectiveness of the 
proposed hard sample mining strategy. Then we compare our 
face detector and alignment against the state-of-the-art methods 
in Face Detection Data Set and Benchmark (FDDB) [25], 
WIDER FACE [24], and Annotated Facial Landmarks in the 
Wild (AFLW) benchmark [8]. FDDB dataset contains the an-
notations for 5,171 faces in a set of 2,845 images. WIDER 
FACE dataset consists of 393,703 labeled face bounding boxes 
in 32,203 images where 50% of them for testing (divided into 
three subsets according to the difficulty of images), 40% for 
training and the remaining for validation. AFLW contains the 
facial landmarks annotations for 24,386 faces and we use the 
same test subset as [22]. Finally, we evaluate the computational 
efficiency of our face detector. 

A. Training Data 

Since we jointly perform face detection and alignment, here 
we use four different kinds of data annotation in our training 
process: (i) Negatives: Regions whose the Intersec-
tion-over-Union (IoU) ratio are less than 0.3 to any 
ground-truth faces; (ii) Positives: IoU above 0.65 to a ground 
truth face; (iii) Part faces: IoU between 0.4 and 0.65 to a ground 
truth face; and (iv) Landmark faces: faces labeled 5 landmarks’ 
positions. There is an unclear gap between part faces and neg-
atives, and there are variances among different face annotations. 
So, we choose IoU gap between 0.3 to 0.4. Negatives and pos-
itives are used for face classification tasks, positives and part 
faces are used for bounding box regression, and landmark faces 
are used for facial landmark localization. Total training data are 
composed of 3:1:1:2 (negatives/ positives/ part face/ landmark 
face) data. The training data collection for each network is 
described as follows: 

Fig. 2.  The architectures of P-Net, R-Net, and O-Net, where “MP” means max pooling and “Conv” means convolution. The step size in convolution and pooling
is 1 and 2, respectively.  
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1) P-Net: We randomly crop several patches from WIDER 
FACE [24] to collect positives, negatives and part face. Then, 
we crop faces from CelebA [23] as landmark faces. 
2) R-Net: We use the first stage of our framework to detect 
faces from WIDER FACE [24] to collect positives, negatives 
and part face while landmark faces are detected from CelebA 
[23]. 
3) O-Net: Similar to R-Net to collect data but we use the first 
two stages of our framework to detect faces and collect data. 

B. The effectiveness of online hard sample mining  

To evaluate the contribution of the proposed online hard 
sample mining strategy, we train two P-Nets (with and without  
online hard sample mining) and compare their performance on 
FDDB. Fig. 3 (a) shows the results from two different P-Nets 
on FDDB. It is clear that the online hard sample mining is 
beneficial to improve performance. It can bring about 1.5% 
overall performance improvement on FDDB. 

C. The effectiveness of joint detection and alignment 

To evaluate the contribution of joint detection and alignment, 
we evaluate the performances of two different O-Nets (joint 
facial landmarks regression learning and do not joint it) on 
FDDB (with the same P-Net and R-Net). We also compare the 
performance of bounding box regression in these two O-Nets. 
Fig. 3 (b) suggests that joint landmark localization task learning 
help to enhance both face classification and bounding box 
regression tasks. 

D. Evaluation on face detection 

To evaluate the performance of our face detection method, 
we compare our method against the state-of-the-art methods [1, 
5, 6, 11, 18, 19, 26, 27, 28, 29] in FDDB, and the 
state-of-the-art methods [1, 24, 11] in WIDER FACE. Fig. 4 
(a)-(d) shows that our method consistently outperforms all the 
compared approaches by a large margin in both the bench-
marks. 

E. Evaluation on face alignment 

In this part, we compare the face alignment performance of 
our method against the following methods: RCPR [12], TSPM 
[7], Luxand face SDK [17], ESR [13], CDM [15], SDM [21], 
and TCDCN [22]. The mean error is measured by the distances 
between the estimated landmarks and the ground truths, and 
normalized with respect to the inter-ocular distance. Fig. 5 
shows that our method outperforms all the state-of-the-art 
methods with a margin. It also shows that our method shows 
less superiority in mouth corner localization. It may result from 
the small variances of expression, which has a significant in-

fluence in mouth corner position, in our training data. 

F. Runtime efficiency 

Given the cascade structure, our method can achieve high 
speed in joint face detection and alignment. We compare our 
method with the state-of-the-art techniques on GPU and the 
results are shown in Table II. It is noted that our current im-
plementation is based on un-optimized MATLAB codes. 

IV. CONCLUSION 

In this paper, we have proposed a multi-task cascaded CNNs 
based framework for joint face detection and alignment. Ex-
perimental results demonstrated that our methods consistently 
outperform the state-of-the-art methods across several chal-
lenging benchmarks (including FDDB and WIDER FACE 
benchmarks for face detection, and AFLW benchmark for face 
alignment) while achieves real time performance for 640x480 
VGA images with 20x20 minimum face size. The three main 
contributions for performance improvement are carefully de-
signed cascaded CNNs architecture, online hard sample mining 
strategy, and joint face alignment learning. 

Ours (0.9504)
DP2MFD [27] (0.9173)
CCF [26] (0.8590)
Faceness [11] (0.9098)
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Yan [6] et al. (0.8615)
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TABLE II 

SPEED COMPARISON OF OUR METHOD AND OTHER METHODS 

Method GPU Speed 

Ours Nvidia Titan Black 99 FPS 
Cascade CNN [19] Nvidia Titan Black 100 FPS 
Faceness [11] Nvidia Titan Black 20 FPS 
DP2MFD [27] Nvidia Tesla K20 0.285 FPS 

 

Fig. 3. (a) Detection performance of P-Net with and without online hard sample
mining. (b) “JA” denotes joint face alignment learning in O-Net while “No JA”
denotes do not joint it. “No JA in BBR” denotes use “No JA” O-Net for
bounding box regression. 
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